Molecular recognition at the interface between crystals and biology: generation, manifestation and detection of chirality at crystal surfaces{
نویسندگان
چکیده
An intimate historical and conceptual association exists between crystals and chirality. Yet the relationships between crystal symmetry and crystal morphology are not fully understood. In biological environments, molecular recognition between biological macromolecules and crystal surfaces can affect crystal morphological symmetry, or can be modulated by the symmetry expressed at the surfaces. The transfer of chiral information between biological macromolecules and ordered surfaces is considered here through several examples. Certain biogenic crystals of calcium oxalate exhibit a chiral morphology, although both molecular and crystal structures are non-chiral. This reduction in symmetry is believed to be induced by proteins during crystal nucleation. In contrast, crystals of calcium-{R,R}and -{S,S}-tartrate tetrahydrate are inherently chiral, but their morphologies are symmetric. The chirality expressed by the crystal faces is however detected by cells, which selectively adhere to the {R,R} crystals. Structural insight into stereoand enantio-selective recognition of chiral surfaces is provided by comparison between the degrees of recognition of four antibodies, raised and selected against crystal surfaces. A general framework is presented, where chirality can be understood at a length-scale larger than molecular, namely the length-scale of crystal surfaces, crystal morphology and the relations between them.
منابع مشابه
Detection of Polymer Brushes developed via Single Crystal Growth
Single crystals consisting various surface morphologies and epitaxial structures were applied to investigate the effect of other phase regions in the vicinity of a given tethered chains-covered area having a certain molecular weight of amorphous brushes. The designed experiments demonstrated that regardless of the type of surface morphology (patterned and especial mixed-brushes, homo and co...
متن کاملسازوکار تشکیل شکلهای بلوری هالیت در تبخیریهای بخش 2 از سازند گچساران- میدان نفتی آب تیمور
Cutting samples from evaporite deposits of Member Two of Gachsaran Formation in well #1 at Ab-Teymure Oil Field have been studied by petrographic microscope, SEM with EDX attachment and XRD to identify the halite crystal shapes. This study led to recognition of three stages, including flooding, concentration and desiccation, for the formation of halite in salt pan. In the flooding stage, the fl...
متن کاملDifferential adhesion of cells to enantiomorphous crystal surfaces.
Interactions during cell adhesion to external surfaces may reach the level of discrimination of molecular chirality. Cultured epithelial cells interact differently with the [011] faces of the (R,R) and (S,S) calcium tartrate tetrahydrate crystals. In a modified version of the classical Pasteur experiment, the enantiomorphous crystals were sorted out from a 1:1 mixture by the selective adhesion ...
متن کاملNano-sized AlPO4-5 Crystals: Synthesis and characterization
Molecular sieves and zeolites are materials whose crystalline frameworks form nanometer or subnanometer pores. A variety of different crystal structures are known having a range of pore sizes. Because the pore sizes are usually smaller than 2 nm, they are classified as microporous materials. Synthesis of microporous materials is usually conducted by the high temperature treatment (80-200 °C) of...
متن کاملNano-sized AlPO4-5 Crystals: Synthesis and characterization
Molecular sieves and zeolites are materials whose crystalline frameworks form nanometer or subnanometer pores. A variety of different crystal structures are known having a range of pore sizes. Because the pore sizes are usually smaller than 2 nm, they are classified as microporous materials. Synthesis of microporous materials is usually conducted by the high temperature treatment (80-200 °C) of...
متن کامل